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Abstract: Dilatation wave involves compression and extension and is
known as the curl-free solution of the elastodynamic equation. Shear
wave on the contrary does not involve any change in volume and is the
divergence-free solution. This letter seeks to examine the elastody-
namic Green’s function through this definition. By separating the
Green'’s function in divergence-free and curl-free terms, it appears first
that, strictly speaking, the longitudinal wave is not a pure dilatation
wave and the transverse wave is neither a pure shear wave. Second,
not only a longitudinal shear wave but also a transverse dilatational
wave exists. These waves are shown to be a part of the solution known
as coupling terms. Their special motion is carefully described and
illustrated.
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1. Introduction

The anomalous polarization of shear wave was observed in seismology' in non-
destructive testing”* and medical imaging.* It is in this latter field called elastography
that this special wave has been systematically studied®® and even commercialized’ for
fibrosis diagnostic. In this paper, it is shown that this latter longitudinal shear wave
has a symmetrical counterpart: The transverse dilatational wave. Let us consider the
simplest situation of homogeneous linear isotropic elastic solid. In the literature, the
question of the dilatational and shear waves is often treated in the frame of the homo-
geneous elastodynamic equation. Without any source term, the splitting of solutions
into pure dilatational and shear waves does not raise special difficulties.® However this
far-field approximation imposes a longitudinal polarization on the dilatational wave
and a transverse polarization on the shear wave in contradiction with the experimental
observations mentioned above. The exact full wave equation in the time domain with
a source term is tackled in this letter:

(2 +20)V(ViE) — iV AV Adl — pon = o) o(1) . (1)
A and p are the Lamé coefficients, # is the displacement vector, p is the density, and
the ;)oint pulse force has the direction 7i. The outgoing solution is the Green’s func-
tion”!° and can be written in its harmonic form:!
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In this expression, o and f§ are the longitudinal and transverse wave speeds, r is the ra-
dial distance to the source, ¢ and k are the dilatational and shear wave numbers,
respectively, o is the angular frequency, and the direction cosines y; = x;/r (see Fig. 1).
Each term of the sum can be identified as a longitudinal far field wave G“, a transverse
far field wave G', and a near field wave G™' that has sometimes been identified as a
coupling wave,

Gun(0,r) = G~ + GI + GNF, (3)

mn mn mn

2. The two terms Green’s function

It is worth noticing that the longitudinal far field wave is not strictly curl-free. Without
loss of generality, let us consider now a source oriented in the direction 3:

v x GL = <8G3L3 B 8G3L2)i B <6G3L3 B 8G§~1> 54 (aG3L2 B 8G3L1> 3

sz 8)63 Bxl aX3 (9)61 6x2
eiqr R .
= dnpr? [—Vzl + “/12}-

Equivalently, the transverse far field wave is not divergence-free:

OGL, Gl 0GL, ek
v.ql =293 32 33 _ .
09X + 0x2 i Ox3  2mppir? &

What remains tends to zero in the far field as #*. In a more remarkable way, it is per-
fectly compensated by the divergence and curl of the coupling term, respectively:'

x; (mm)

Fig. 1. (Color online) Elastic Green’s function. The dilatational and the shear wave are clearly visible at 6 =0
and 0 =mn/2. The longitudinal shear wave and the transverse dilatational wave are located inside the dashed
boxes called Zoom #1 and #2.
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The fact that the near field term is neither curl-free nor divergence-free is probably a
strong argument in favor of the name “coupling” between shear and dilatational
waves. However, the near field term can be split in GNFS GNFP:

GNFP(0, ) = L Fnn = Om € (5 - i) ,

~4mp & io \a iw
N ©)
NES 1 3y, — Opme™ (1 1
G o0, r)=—-"""0 ——_—[———|,
mn 4mp 3 io \f io
such that
V(G,, + G®) =0,
VA (GE + GNFPY = 0.
The Green’s function can thus be rewritten as
Goun(0,7) = U 9w igr — 1 30mn = S € (f _ i)
e drmpo? 1 4mp 3 io \o i
1 . 5mn - Vi;zyn eikr + L:;Vm“/ns_ 5"1”1 1 _ i , (7)
dnpp r 47p r io \f iw
Gun(0,7) = GiLnn + G;I;]nFP + G;Tm + Gili\’lllfs = Grl:m + Gsm'
P S

This form of the Green’s function (7) does not change anything to the result but high-
lights the two distinct parts of the Green’s function: The curl-free term GY, and
divergence-free term G5 . They can rigorously be interpreted as dilatational P and shear
S waves. An important comment can be made at this point. The term “Coupling” should
probably be abandoned since it can be split to be part of two independent propagating
waves. “Near field” is more appropriate for the G™'> and GNFF terms that obey to a 1/
decreasing law. They nonetheless can be detected in the far field. The reason is that spe-
cific directions exist to which G~ or G are zero. They can no more mask the influence of
GNP and GNFS. Along these directions, whatever the distance from the source and thus
in the far field, these latter terms give rise to detectable waves. This statement is only true
for pulsed sources able to create well-separated S and P wave-fronts. This is the reason
why, while the theoretical analyses are conducted on harmonic Green’s function, the illus-
trations use pulsed Green’s function. For example, in elastography the term G is fre-
quently measured in the direction where G is zero that is to say along a pulsed force.
Without any doubt this special longitudinally polarized wave is a shear wave. Now let us
take a closer look to these special angles 0 = 7/2 and 0 = 0 according to which the near
field terms are detectable.

3. Divergence, curl, and polarization of near field waves

In the direction perpendicular to the point force, the angle 0 is n/2, Fig. 1. From
Egs. (2) and (3) the longitudinal far field wave gives G}, (0 = n/2) = 0. According to
Eq. (6), the components of the dilatational wave in the same direction reduce to
GYFP(0=n/2) = —(1/4npr) (e Jiw)(r/o—1/iw) and GYP(0=n/2)=G(0=n/2)
=0. As a consequence, in this direction the dilatational wave has a transverse
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polarization. Furthermore, in this direction the cosine director y;(0=m/2)=0 thus,
following Eq. (5) V-GNF(0,r)=0. This dilatational wave is divergence-free in this
direction.

The same logic holds for the shear wave. In the direction parallel to the point
force, the angle 0 is 0. From Egs. (2) and (3), the transverse far field wave is
G1 (0 =0) = 0. According to Eq. (6), the components of the shear wave in the same
direction reduce to GIFS(0 =0) = —(1/2np 1) (e Jiw)(r/B — 1/iw) and GNFS(0 = 0)
= G;;FS(Q =0) =0. As a consequence the shear wave has a longitudinal polarization.
In addition, the cosine directors y;(0 = 0) = y,(6 = 0) = 0 thus, according to Eq. (4)
V AGYF(0,r) = 0. This shear wave is curl-free in this direction.

4. Numerical Green’s function

These two special waves are locally and simultaneously divergence- and curl-free.
What kind of strain can one expect from such properties? In order to illustrate this
question, the Green’s function in an infinite homogeneous elastic medium was numeri-
cally computed and represented in the following figures. The chosen parameters with-
out loss of generality are 2000 and 1000ms ' for the dilatational wave o and the shear
wave speed 5, 1 MHz for the central frequency pulse, 15 mm for the spatial dimension
and the axis 3, which is the direction of the point source, is set horizontally. In Fig. 1,
a typical radiation pattern is represented with a dilatational wave clearly ahead and
behind the source and with a shear wave on both sides. The two regions inside the
dashed boxes have been zoomed in Figs. 2 and 3. They are the center of interest of the
paper.

In the region Zoom #1 represented in Fig. 2, the depth range corresponds to
the S-wave front. A rectangle is super imposed to the actual displacement field in order
to amplify and to clearly illustrate the strain induced by the longitudinal shear wave.
This first rectangle on the left is at rest, then the second rectangle is stretched verti-
cally, the third is at rest again, the fourth is stretched horizontally, and the last one
comes back at rest. The whole strain sequence is represented on the upper right panel
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Fig. 2. (Color online) Zoom #1. The longitudinal shear wave is submitted to a special strain field propagating
at the shear speed with a wave vector k. It is represented as a semi-transparent rectangle. The longitudinal com-
ponent of displacements along the horizontal axis of symmetry is clearly apparent (black and red arrows). The
strain sequence illustrated in the upper right panel implies neither volumic change nor particle velocity circula-
tion: It is divergence- and curl-free.
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Fig. 3. (Color online) Zoom #2. The transverse dilatation wave propagates at the dilatation wave speed with a
wave vector ¢. The transversal component of displacements along the vertical axis of symmetry is clearly appa-
rent (black and red arrows). The strain sequence illustrated in the upper right panel implies neither volumic
change nor particle velocity circulation: It is divergence- and curl-free.

of Fig. 2. Along the axis of symmetry a longitudinal component is clearly apparent. It
is quite straightforward to verify that this strain sequence induces a longitudinal polar-
ization of the S-wave on one hand and implies neither volumic change nor particle ve-
locity circulation on the other hand. As a consequence, it is divergence- and curl-free.
This does not impose the strain tensor to be zero: The induced shape changes of a
rhombus inside the five rectangles prove that a shear strain is still present. At last, we
may point out that in 1990, Yamakoshi ez al.* came to the same description of the lon-
gitudinal S-wave without Green’s function, but with a remarkable intuition.

As far as the transverse dilatational wave is concerned, the strain is more com-
plex. In the region of Zoom #2 represented in Fig. 3, the depth range corresponds to
the dilatational wave front. As seen on the upper right panel, the shape of the rectan-
gles is impacted with respect to the symmetry of the diagonals. In contrast with simple
shear, this strain sequence known as pure shear leaves unchanged the rotation and the
volume of rectangles.'> More obvious is the global displacement field in the direction
which is perpendicular to the propagation: The dilatational wave has a transverse
polarization and is divergence- and curl-free.

Some practical applications of this work could consist of using a longitudinal
transducer or a laser to measure both P- and S-wave arrivals from a point source.
Equivalently a transverse transducer is able to detect both waves if placed in the cor-
rect direction. Thus one measurement only can supply elastic properties of solids.
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